Norm Penalized Joint-Optimization NLMS Algorithms for Broadband Sparse Adaptive Channel Estimation
نویسندگان
چکیده
A joint-optimization method is proposed for enhancing the behavior of the l1-normand sum-log norm-penalized NLMS algorithms to meet the requirements of sparse adaptive channel estimations. The improved channel estimation algorithms are realized by using a state stable model to implement a joint-optimization problem to give a proper trade-off between the convergence and the channel estimation behavior. The joint-optimization problem is to optimize the step size and regularization parameters for minimizing the estimation bias of the channel. Numerical results achieved from a broadband sparse channel estimation are given to indicate the good behavior of the developed joint-optimized NLMS algorithms by comparison with the previously proposed l1-normand sum-log norm-penalized NLMS and least mean square (LMS) algorithms.
منابع مشابه
Extra Gain: Improved Sparse Channel Estimation Using Reweighted l_1-norm Penalized LMS/F Algorithm
The channel estimation is one of important techniques to ensure reliable broadband signal transmission. Broadband channels are often modeled as a sparse channel. Comparing with traditional dense-assumption based linear channel estimation methods, e.g., least mean square/fourth (LMS/F) algorithm, exploiting sparse structure information can get extra performance gain. By introducing -norm penalty...
متن کاملVariable is Better Than Invariable: Stable Sparse VSS-NLMS Algorithms with Application to Estimating MIMO Channels
To estimate multiple-input multiple-output (MIMO) channels, invariable step-size normalized least mean square (ISSNLMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model due to broadband signal transmission, such sparsity can be exploited by adaptive sparse channel estimation (ASCE) methods using sparse ISS-NLMS algorit...
متن کاملStable adaptive sparse filtering algorithms for estimating multiple-input-multiple-output channels
Channel estimation problem is one of the key technical issues for broadband multiple-input–multiple-output (MIMO) signal transmission. To estimate the MIMO channel, a standard least mean square (LMS) algorithm was often applied to adaptive channel estimation because of its low complexity and stability. The sparsity of the broadband MIMO channel can be exploited to further improve the estimation...
متن کاملMicrosoft Word - Gui_ICCS2014.docx
To estimate multiple-input multiple-output (MIMO) channels, invariable step-size normalized least mean square (ISSNLMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model due to broadband signal transmission, such sparsity can be exploited by adaptive sparse channel estimation (ASCE) methods using sparse ISS-NLMS algorit...
متن کاملLeast Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation
Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017